In 1994, physicist Miguel Alcubierre proposed a radical technology that would allow faster than light travel: the warp drive, a hypothetical way to skirt around the universe’s ultimate speed limit by bending the fabric of reality.
It was an intriguing idea – even NASA has been researching it at the Eagleworks laboratory – but Alcubierre’s proposal contained problems that seemed insurmountable. Now, a recent paper by US-based physicists Alexey Bobrick and Gianni Martire has resolved many of those issues and generated a lot of buzz.
But while Bobrick and Martire have managed to substantially demystify warp technology, their work actually suggests that faster-than-light travel will remain out of reach for beings like us, at least for the time being.
There is, however, a silver lining: warp technology may have radical applications beyond space travel.
Across the universe?
The story of warp drives starts with Einstein’s crowning achievement: general relativity. The equations of general relativity capture the way in which spacetime – the very fabric of reality – bends in response to the presence of matter and energy which, in turn, explains how matter and energy move.
General relativity places two constraints on interstellar travel. First, nothing can be accelerated past the speed of light (around 300,000 km per second). Even traveling at this dizzying speed it would still take us four years to arrive at Proxima Centauri, the nearest star to our Sun.
Second, the clock on a spaceship traveling close to the speed of light would slow down relative to a clock on Earth (this is known as time dilation). Assuming a constant state of acceleration, this makes it possible to travel the stars. One can reach a distant star that is 150 light years away within one’s lifetime. The catch, however, is that upon one’s return more than 300 years will have passed on Earth. READ MORE
The story of warp drives starts with Einstein’s crowning achievement: general relativity. The equations of general relativity capture the way in which spacetime – the very fabric of reality – bends in response to the presence of matter and energy which, in turn, explains how matter and energy move.
General relativity places two constraints on interstellar travel. First, nothing can be accelerated past the speed of light (around 300,000 km per second). Even traveling at this dizzying speed it would still take us four years to arrive at Proxima Centauri, the nearest star to our Sun.
Second, the clock on a spaceship traveling close to the speed of light would slow down relative to a clock on Earth (this is known as time dilation). Assuming a constant state of acceleration, this makes it possible to travel the stars. One can reach a distant star that is 150 light years away within one’s lifetime. The catch, however, is that upon one’s return more than 300 years will have passed on Earth. READ MORE
No comments:
Post a Comment